Xác suất có điều kiện

1. Định nghĩa:

Xác suất của biến cố A được tính với điều kiện biến cố B đã xảy ra được gọi là xác suất có điều kiện của A. Và kí hiệu là P(A/B).

Thí du: Cho một hộp kín có 6 thẻ ATM của ACB và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của ACB.

Giải: Gọi A là biến cố “lần thứ hai lấy được thẻ ATM Vietcombank“, B là biến cố “lần thứ nhất lấy được thẻ ATM của ACB“. Ta cần tìm P(A/B).

Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Vietcombank) nên : P(A/B) =  \dfrac{4}{9}

2. Công thức nhân xác suất

a. Công thức: Xác suất của tích hai biến cố A và B bằng tích xác suất của một trong hai biến cố đó với xác suất có điều kiện của biến cố còn lại:

P(A.B) = P(A) . P(B/A) = P(B) . P(A/B)

Chứng minh: Giả sử phép thử có n kết quả cùng khả năng có thể xảy ra mA kết quả thuận lợi cho A, mB kết quả thuận lợi cho B. Vì A và B là hai biến cố bất kì, do đó nói chung sẽ có k kết quả thuận lợi cho cả A và B cùng đồng thời xảy ra. Theo định nghĩa cổ điển của xác suất ta có: P(A.B) =  \dfrac{k}{n};  P(A) = \dfrac{m_A}{n}

Ta đi tính P(B/A).

Với điều kiện biến cố A đã xảy ra, nên số kết quả cùng khả năng của phép thử đối với biến B là mA, số kết quả thuận lợi cho B là k. Do đó:P(B/A) = \dfrac{k}{m_A}

Như vậy: P(A.B) =   \dfrac{k}{n}=  { \dfrac{m_A}{n}}.{ \dfrac{k}{m_A}}  = P(A).P(B/A)

Vì vai trò của hai biến cố A và B như nhau. Bằng cách chứng minh tương tự ta được: P(A.B) = P(B).P(A/B)♦

(chứng minh trên được tham khảo từ giáo trình Xác suất thống kê của tác giả Hoàng Ngọc Nhậm – NXB Thống Kê)

Ví dụ:

1. Trong hộp có 20 nắp khoen bia Tiger, trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng xe BMW”. Bạn được chọn lên rút thăm lần lượt hai nắp khoen, tính xác suất để cả hai nắp đều trúng thưởng.

Giải: Gọi A là biến cố “nắp khoen đầu trúng thưởng”. B là biến cố “nắp khoen thứ hai trúng thưởng”. C là biến cố “cả 2 nắp đều trúng thưởng”.

Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng. p(A) = 2/20

Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng. Do đó: p(B/A) = 1/19.

Từ đó ta có: p(C) = p(A). p(B/A) = (2/20).(1/19) = 1/190 ≈ 0.0053

2. Áo Việt Tiến trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo đủ tiêu chuẩn xuất khẩu?

Giải:

Gọi A là biến cố ” qua được lần kiểm tra đầu tiên”, B là biên cố “qua được lần kiểm tra thứ 2″, C là biến cố “đủ tiêu chuẩn xuất khẩu”

Thì: p(C) = p(A). p(B/A) = 0,98.0,95 = 0,931

3. Lớp Lý 2 Sư Phạm có 95 Sinh viên, trong đó có 40 nam và 55 nữ. Trong kỳ thi môn Xác suất thống kê có 23 sinh viên đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một sinh viên trong danh sách lớp. Tìm xác suất gọi được sinh viên đạt điểm giỏi môn XSTK, biết rằng sinh viên đó là nữ?

Giải:

Gọi A là biến cố “gọi được sinh viên nữ”, B là biến cố gọi được sinh viên đạt điểm giỏi môn XSTK”, C là biến cố “gọi được sinh viên nữ đạt điểm giỏi”

Thì ta có: p(C) = P(B/A)

Do đó: p(C) = p(B/A) = \dfrac{p(AB)}{p(A)} = { \dfrac{11}{95}}.{ \dfrac{55}{95}} = { \dfrac{11}{55}} =0,2

b. Các định nghĩa về các biến cố độc lập:

* Định nghĩa 1: Hai biến cố A và B gọi là độc lập nhau nếu việc xảy ra hay không xảy ra biến cố này không làm thay đổi xác suất xảy ra của biến cố kia và ngược lại.

* Ta có thể dùng khái niệm xác suất có điều kiện để định nghĩa các biến cố độc lập như sau:

Nếu P(A/B) = P(A) và P(B/A) = P(B) thì A và B độc lập với nhau.

Trong trường hợp việc biến cố này xảy ra hay không xảy ra làm cho xác suất xảy ra của biến cố kia thay đổi thì hai biến cố đó gọi là phụ thuộc nhau.

Thí dụ: Trong bình có 4 quả cầu trắng và 5 quả cầu xanh, lấy ngẫu nhiên từ bình ra 1 quả cầu. Gọi A là biến cố “lấy được quả cầu xanh“. Hiển nhiên P(A) = 5/9 . Quả cầu lấy ra được bỏ lại vào bình và tiếp tục lấy 1 quả cầu. Gọi B là biến cố “lần thứ 2 lấy được quả cầu xanh“, P(B) = 5/9. Rõ ràng xác suất của biến cố B không thay đổi khi biến cố A xảy ra hay không xảy ra và ngược lại. Vậy hai biến cố A và B độc lập nhau.

Ta chú ý rằng: nếu A và B độc lập, thì A , {\overline{B}} hoặc {\overline{A}} , B hoặc {\overline{A}} , {\overline{B}} cũng độc lập với nhau.

Trong thực tế việc nhận biết tính độc lập, phụ thuộc, xung khắc của các biến cố. chủ yếu dựa vào trực giác.

* Định nghĩa 2: Các biến cố A1, A2, …, An, được gọi là độc lập từng đôi nếu mỗi cặp hai biến cố bất kỳ trong n biến cố đó độc lập với nhau.

Thí dụ: Xét phép thử từng đồng xu 3 lần. Gọi Ai là biến cố: “được mặt sấp ở lần tung thứ i” (i = 1, 2, 3). Rõ ràng mỗi cặp hai trong 3 biến cố đó độc lập với nhau. Vậy A1, A2, A3 độc lập từng đôi.

* Định nghĩa 3: các biến cố A1, A2, …, An, được gọi là độc lập từng phần nếu mỗi biến cố độc lập với tích của một tổng hợp bất kỳ trong các biến cố còn lại.

Ta chú ý là các biến cố độc lập từng đội thì chưa chắc độc lập toàn phần. Điều kiện độc lập toàn phần mạnh hơn độc lập từng đôi.

c) Hệ quả: Từ định lý trên ta có thể suy ra một số hệ quả sau đây:

Hệ quả 1:

Xác suất của tích hai biến cố độc lập bằng tích xác suất của các biến cố đó: P(A.B) = P(A).P(B).

Hệ quả 2:

Xác suất của tích n biến cố bằng tích xác suất của các biến cố đó, trong đó xác suất của mỗi biến cố tiếp sau đều được tính với điều kiện tấc cả các biến cố trước đó đã xảy ra:

P(A_1.A_2 ... A_n) = P(A_1).P(A_2/A_1).P(A_3/A_1.A_2) ... P(A_n/A_{1}...A_{n-1})

Hệ quả 3:

Xác suất của tích n biến cố độc lập toàn phần bằng tích xác suất của các biến cố đó:

P(A1.A2 … An) = P(A1).P(A2) … P(An)

Thảo luận

200 thoughts on “Xác suất có điều kiện

  1. nho moi nguoi giai dum minh nhung bai nay voi
    .Đề thi trắc nghiệm 40 câu hỏi, mỗi câu hỏi có 5 phương án trả lời và trong đó có 1 phương án đúng. Một thí sinh đi thi do không học bài nên đã chọn ngẫu nhiên phương án trả lời cho mỗi câu hỏi. Gọi X là số câu mà thí sinh trả lời đúng,
    a. Tìm Kỳ vọng E(X) và độ lệch chuẩn .
    b. Tính xác suất để thí sinh này trả lời đúng ít nhất 1 câu hỏi.

    4./ Để đánh giá về tỷ lệ công trình có vi phạm các quy định về xây dựng, bộ phận thanh tra tiến hành kiểm tra ngẫu nhiên 36 công trình thì có 6 công trình bị xử lý vi phạm.
    a. Ước lượng khoảng của tỷ lệ công trình xây dựng vi phạm với độ tin cậy 97%.
    b. Nếu nhận định tỷ lệ công trình xây dựng có vi phạm là 18% thì có chấp nhận được không với mức ý nghĩa 3%?

    Like

    Posted by pé na | 02/06/2015, 12:28

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s

Translators & RSS

English French RussiaMaths 4 Physics (M4Ps)


Bạn hãy nhập địa chỉ email của mình để đăng ký theo dõi tin tức từ blog này và nhận những bài viết mới nhất qua địa chỉ email.

Join 2 632 other followers

Đôi lời

Bạn có thể theo dõi các lời bình liên quan đến lời bình của mình qua email bằng cách chọn dòng thông báo Báo cho bạn khi có người bình luận tiếp theo đề tài này bằng điện thư mỗi khi viết 1 lời bình.


Rất mong các bạn viết lời nhắn bằng tiếng việt có dấu nhé.

Để viết tiếng việt có dấu bạn dùng font chữ Unicode và bảng mã là Unicode UTF-8.


Để biết cách gõ công thức Toán học trong các lời nhắn ở trang web này, mời bạn đọc bài hướng dẫn tại đây hoặc bạn có thể xem bài hướng dẫn dùng MathType tại đây và bài tạo công thức trực tuyến tại đây


Get Well

Theo dõi

Get every new post delivered to your Inbox.

Join 2 632 other followers

%d bloggers like this: