Khai triển Taylor – Maclaurin (Taylor expansion)

Shortlink: http://wp.me/P8gtr-R

Chỉ dẫn lịch sử

1. Công thức khai triển:

Giả thiết hàm số y = f(x) có tất cả các đạo hàm đến cấp n + 1 (kể cả đạo hàm cấp n + 1) trong một khoảng nào đó chứa điểm x = a.

Hãy xác định một đa thức y = P_n(x) bậc n mà giá trị của nó tại x = a bằng giá trị f(a) và giá trị của các đạo hàm đến hạng n của nó bằng giá trị của các đạo hàm tương ứng của hàm số f(x) tại điểm đó. Nghĩa là:

P_n(a) = f(a) ; P_{n}^{'}(a) = f'(a);...; P_{n}^{(n)}(a) = {{f}^{(n)}}(a) (1)

Ta hy vọng sẽ tìm được một đa thức như thế trong một ý nghĩa nào đó “gần” với hàm số f(x).

Ta sẽ xác định đa thức đó dưới dạng một đa thức theo lũy thừa (x – a) với các hệ số cần xác định:

{{P}_{n}}(x)={{C}_{0}}+{{C}_{1}}.(x-a)+{{C}_{2}}.{{(x-a)}^{2}}+...+{{C}_{n}}.{{(x-a)}^{n}} \qquad (2)

Các hệ số C_0, C_1, C_2, ..., C_n được xác định sao cho điều kiện (1) được thỏa mãn.

Trước hết, ta tìm các đạo hàm của P_n(x) :

\left\{ \begin{array}{l} P_{n}^{'}(x) = C_1 + 2C_2(x-a) + 3C_3.{(x-a)}^2 + ... + nC_n{(x-a)}^{n-1} \\ P_{n}^{''}(x) = 2C_2+3.2C_3.(x-a) + ... + n(n-1)C_n{(x-a)}^{n-2} \\ .................................................................................. \\ P_{n}^{(n)}(x) = n(n-1)...2.1.C_n \\ \end{array} \right. (3)

Thay x = a vào các biểu thức (2) và (3) ta có:

\left\{\begin{array}{l} P_n(a) = C_0 \\ P_n^{'}(a) = C_1 \\ P_n^{''}(a) = 2.1.C_2 \\ \text{....................................} \\ P_n^{(n)}(a) = n.(n-1)...2.1C_n \\ \end{array} \right.

So sánh với điều kiện (1) ta có:

\left\{ \begin{array}{l} f(a)={{C}_{0}} \\ f'(a)={{C}_{1}} \\ f''(a)=2.1.{{C}_{2}} \\ ....................... \\ {{f}^{(n)}}(a)=n.(n-1)...2.1.{{C}_{n}} \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{C}_{0}}=f(a) \\ {{C}_{1}}=f'(a) \\ {{C}_{2}}={ \dfrac{1}{2!}}.f''(a) \\ ....................... \\ {{C}_{n}}={ \dfrac{1}{n!}}.{{f}^{(n)}}(a) \\ \end{array} \right. (4)

Thay các giá trị của C_0, C_1, C_2, ..., C_n vào công thức (2) ta có đa thức cần tìm:

\begin{array}{r}P_n(x) = f(a) + { \dfrac{f'(a)}{1!}}(x-a) + { \dfrac{f''(a)}{2!}}(x-a)^2 + { \dfrac{f'''(a)}{3!}}(x-a)^3 + \\ ... + { \dfrac{f^{(n)}(a)}{n!}}(x-a)^n \\ \end{array}

Ký hiệu bằng R_n(x) , hiệu giữa giá trị của hàm số đã cho f(x) và đa thức mới lập P_n(x) (hình vẽ): {{R}_{n}}(x) = f(x) - {{P}_{n}}(x)

Hay:

\begin{array}{r} f(x) = f(a) + { \dfrac{f'(a)}{1!}}(x-a) + { \dfrac{f''(a)}{2!}}{{(x-a)}^{2}} + { \dfrac{f'''(a)}{3!}}{{(x-a)}^{3}} + ... \\ + { \dfrac{{{f}^{(n)}}(a)}{n!}}{{(x-a)}^{n}} + {{R}_{n}}(x) \\ \end{array} (6)

taylor R_n(x) gọi là số hạng dư – đối với những giá trị x làm cho số hạng dư R_n(x) bé, thì khi đó đa thức P_n(x) cho biểu diễn gần đúng của hàm số f(x).

Do đó, công thức (6) cho khả năng thay hàm số y = f(x) bằng đa thức P_n(x) với độ chính xác tương ứng bằng giá trị của số hạng dư R_n(x)

Ta sẽ xác định những giá trị x để số hạng dư R_n(x) khá bé .

Viết số hạng dư dưới dạng: {{R}_{n}}(x) = { \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}Q(x) (7)

Trong đó Q(x) là hàm số cần phải xác định.

Với x và a cố định, hàm số Q(x) có giá trị xác định, ký hiệu giá trị đó bằng Q.

Ta xét, hàm số phụ theo biến t (t là giá trị nằm giữa a và x) :

\begin{array}{r}F(t) = f(x) - f(t) - { \dfrac{x-t}{1!}}f'(t) - { \dfrac{(x-t)^2}{2!}}f''(t) - ... \\ - { \dfrac{(x-t)^n}{n!}}f^{(n)}(t) - { \dfrac{(x-t)^{n+1}}{(n+1)!}}Q \\ \end{array} (8)

Tìm đạo hàm F’(t) :

\begin{array}{l} {F}'(t)=-{f}'(t)+{f}'(t)-{ \dfrac{(x-t)}{1}}{f}''(t)+{ \dfrac{2(x-t)}{2!}}{f}''(t) \\ \qquad -{ \dfrac{{{(x-t)}^{2}}}{2!}}{f}'''(t)+...-{ \dfrac{{{(x-t)}^{n-1}}}{(n-1)!}}{{f}^{(n)}}(t)+{ \dfrac{n{{(x-t)}^{n-1}}}{n!}}{{f}^{(n)}}(t) \\ \qquad -{ \dfrac{{{(x-t)}^{n}}}{n!}}{{f}^{(n+1)}}(t)+{ \dfrac{(n+1){{(x-t)}^{n}}}{(n+1)!}}Q \\ \end{array}

Rút gọn lại ta được :

F'(t)=-{ \dfrac{{{(x-t)}^{n}}}{n!}}{{f}^{(n+1)}}(t)+{ \dfrac{(n+1){{(x-t)}^{n}}}{(n+1)!}}Q \qquad (9)

Vậy hàm số F(t) có đạo hàm tại mọi điểm t gần điểm có hoành độ a.

Ngoài ra, từ công thức (8) ta có : F(x) = 0 và F(a) = 0.

Vì vậy, áp dụng công thức Rolle cho hàm số F(t) , tồn tại một giá trị t = \xi nằm giữa a và x sao cho F'(\xi) = 0

Thế vào (9) ta có : F'(\xi )=-{ \dfrac{{{(x-\xi )}^{n}}}{n!}}{{f}^{(n+1)}}(\xi )+{ \dfrac{(n+1){{(x-\xi )}^{n}}}{(n+1)!}}Q

Suy ra : Q = f^{(n+1)}(\xi)

Thay biểu thức này vào công thức (7) ta được :

{{R}_{n}}(x) ={ \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}(\xi ) – số hạng dư Larange

\xi là giá trị nằm giữa a và x, nên nó có thể viết dưới dạng: \xi = a + {\theta}(x-a) , \theta \in [0 ;1]

Nghĩa là : R_n(x) = { \dfrac{(x-a)^{n+1}}{(n+1)!}}f^{(n+1)}[a+{\theta}(x-a)]

Công thức:

\begin{array}{r} f(x)=f(a)+{\dfrac{f'(a)}{1!}}(x-a)+{ \dfrac{f''(a)}{2!}}{{(x-a)}^{2}}+{ \dfrac{f'''(a)}{3!}}{{(x-a)}^{3}}+...\\ +{ \dfrac{{{f}^{(n)}}(a)}{n!}}{{(x-a)}^{n}} +{ \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}[a+\theta (x-a)] \\ \end{array} – gọi là công thức khai triển Taylor (Taylor expansion) của hàm số f(x).

Nếu trong công thức Taylor, đặt a = 0 thì nó viết dưới dạng:

\begin{array}{r} f(x) = f(0)+{ \dfrac{x}{1!}}f'(0) + { \dfrac{{{x}^{2}}}{2!}}f''(0) + { \dfrac{{{x}^{3}}}{3!}}f'''(0) + ... + { \dfrac{{{x}^{n}}}{n!}}{{f}^{(n)}}(0) \\ + { \dfrac{{{x}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}(\theta x) , \qquad \theta \in [0;1] \\ \end{array}

là công thức xấp xỉ hàm f(x) thành đa thức bậc n tại x = 0, với số dư R_n(x) – được gọi là công thức khai triển Maclaurin (Maclaurin expansion).

Tóm lại, ta có định lý sau:

Nếu hàm số y = f(x) có các đạo hàm f'(x) , f''(x) , ... , f^{(n)}(x) liên tục tại điểm x_0 và có đạo hàmf^{(n+1)}(x) trong lân cận của x_0 thì tại lân cận đó ta có công thức khai triển:

\begin{array}{r} f(x) = f({{x}_{o}}) + { \dfrac{f'({{x}_{o}})}{1!}}(x-{{x}_{o}}) + { \dfrac{f''({{x}_{o}})}{2!}}{{(x-{{x}_{o}})}^{2}} + ... \\ + { \dfrac{{{f}^{(n)}}({{x}_{o}})}{n!}}{{(x-{{x}_{o}})}^{n}}+{ \dfrac{{{f}^{(n+1)}}(c)}{n!}}{{(x-{{x}_{o}})}^{n+1}} \\ \end{array}

(c ở giữa x_0 và x, c = x_0+ a(x-x_0), 0 < a <1 )

Công thức này gọi là công thức khai triển Taylor cấp n, số hạng của cùng gọi là số hạng dư của nó. Đặc biệt x = 0 thì công thức Taylor trở thành công thức Maclaurin (công thức khai triển tại lân cận x_0 = 0 ):

\begin{array}{r} f(x) = f(0) + { \dfrac{f'(0)}{1!}}x + { \dfrac{f''(0)}{2!}}{{x}^{2}} + ... + { \dfrac{{{f}^{(n)}}(0)}{n!}}{{x}^{n}} + { \dfrac{{{f}^{(n+1)}}(\theta x)}{n!}}{{x}^{n+1}}, \\ \qquad (0<{\theta}<1) \\ \end{array}

Thảo luận

191 bình luận về “Khai triển Taylor – Maclaurin (Taylor expansion)

  1. Thầy cho một vài ví dụ điển hình được không a.

    Thích

    Posted by Trần Văn Tĩnh | 15/11/2012, 20:41
  2. chào thầy và các bạn. mong thầy và các bạn giải hộ bài toán này: khai triển maclaurin của biểu thức:
    sqrt(1 + 2tanx) khi x tiến tới 0

    Thích

    Posted by Help | 13/08/2012, 15:27
  3. chào thầy, thầy giri mẫu em câu này với: tính số e với sai số < 10^-4 bằng khai triển taylor
    em cảm ơn nhiều.

    Thích

    Posted by ThanhCông | 08/04/2012, 10:26
  4. thầy ơi giải mẫu cho em bài này với:sin31 với sai số nhỏ hơn 10^-4

    Thích

    Posted by ThanhCônh | 08/04/2012, 10:23
  5. thầy giúp em câu này
    khai triển taylor f(x)=x/(e^x -1) đến bậc 4 tại x0= ln2

    Thích

    Posted by trần kim | 31/12/2011, 21:35
  6. vào đâu để tìm dc bài tập phần này các anh chị bảo giúp em vs dc k ?tks trước nha

    Thích

    Posted by truong | 27/12/2011, 22:57
  7. Em nhờ thầy giải giúp em bài toán sau với ạ:
    Ý nghĩa của Taylor’s expansion là gì? Đặc biệt là với hàm nhiều biến
    Giả sử với hàm 2 biến sau : f = f(x,y)
    Áp dụng Taylor’s expansion thì ta sẽ có như sau:
    f(x+dx,y+dy)=f(x,y)+∂f/∂x dx+∂f/∂y dy+o(dx,dy)
    Ở đây ta bỏ qua các bậc cao hơn trong khai triển Taylor.
    Câu hỏi đặt ra là:
    Ý nghĩa của cá thành phần (∂f/∂x dx,và ∂f/∂y dy) là gì? Hãy thể hiện bằng hình vẽ với 1 mặt phẳng trong không gian 3 chiều.
    Nếu để dạng: ∂f/∂x dx+∂f/∂y dy thì cá thành phần đạo hàm riêng đều là các scalar. Những biểu diễn dưới dạng dot product của 2 vector sau
    [■(∂f/∂x&∂f/∂y)]∙[■(dx@dy)]
    Thì lúc này các vector trên được gọi là gì? Và ý nghĩa của nó là gì?

    Thích

    Posted by nguyen van tuan | 17/12/2011, 11:27
  8. khi tính giới hạn, khai triển theo maclaurin làm sao biết phân tích theo maclorin f(x) đến bậc mấy a.?
    Vd:limx->o (cosx-e^(-x^2))/x^4(phai phan tích e^(-x^2) theo maclorin den bậc mấy thì được a???

    Thích

    Posted by duong trang | 22/11/2011, 08:57
  9. những ví dụ đó rất là hay!Thầy ơi cho e hỏi bây giờ e muốn mua sách có bài tập về khai triển thì e phải mua sách ở đâu ạ?e cám ơn Thầy ạ!

    Thích

    Posted by boyfithou11b3 | 22/11/2011, 08:02
  10. thưa thầy cô cho em hỏi về khai triển ln(1+cosx) đến x^6 thì làm thế nào ?
    em xin cảm ơn

    Thích

    Posted by trịnh văn thái | 14/11/2011, 02:50
  11. thầy cho em hỏi thêm
    Xét biến hình thuận và nghịch của 2 đường x=1;y=i qua biến đổi w=z+a/z

    Thích

    Posted by vichienthang | 11/11/2011, 09:05
  12. thưa thầy thấy giúp em bài này được ko ạ
    tìm khai triển (3 số hạng đậu) z/cos2z tại lân cần z=pi/2 ,0

    Thích

    Posted by vichienthang | 11/11/2011, 09:01

Gửi phản hồi cho nguyen van tuan Hủy trả lời

Translators & RSS

English French RussiaMaths 4 Physics (M4Ps)


Bạn hãy nhập địa chỉ email của mình để đăng ký theo dõi tin tức từ blog này và nhận những bài viết mới nhất qua địa chỉ email.

Join 2 786 other subscribers

Đôi lời

Bạn có thể theo dõi các lời bình liên quan đến lời bình của mình qua email bằng cách chọn dòng thông báo Báo cho bạn khi có người bình luận tiếp theo đề tài này bằng điện thư mỗi khi viết 1 lời bình.


Rất mong các bạn viết lời nhắn bằng tiếng việt có dấu nhé.

Để viết tiếng việt có dấu bạn dùng font chữ Unicode và bảng mã là Unicode UTF-8.


Để biết cách gõ công thức Toán học trong các lời nhắn ở trang web này, mời bạn đọc bài hướng dẫn tại đây hoặc bạn có thể xem bài hướng dẫn dùng MathType tại đây và bài tạo công thức trực tuyến tại đây


Get Well

Lời nhắn mới nhất

Dương Khánh Uyên trong Trang 2
Trần Thái An trong Trang 2
Chúc Chúc trong Xác suất có điều kiện
Hoang Anh trong Khai triển Taylor – Macl…
Trần Trung Đức trong Mẹo phân tích nhanh 1 phân…
Nhung Duong trong Trang 2
khoi trong Khai triển Taylor – Macl…
Minh pham trong Chuỗi Fourier Sine và Cos…
Minh Phạm trong Chuỗi Fourier
Anh Tuấn trong Cực trị (không điều kiện) của…