Xác suất có điều kiện

1. Định nghĩa:

Xác suất của biến cố A được tính với điều kiện biến cố B đã xảy ra được gọi là xác suất có điều kiện của A. Và kí hiệu là P(A/B).

Thí du: Cho một hộp kín có 6 thẻ ATM của ACB và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của ACB.

Giải: Gọi A là biến cố “lần thứ hai lấy được thẻ ATM Vietcombank“, B là biến cố “lần thứ nhất lấy được thẻ ATM của ACB“. Ta cần tìm P(A/B).

Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Vietcombank) nên : P(A/B) =  \dfrac{4}{9}

2. Công thức nhân xác suất

a. Công thức: Xác suất của tích hai biến cố A và B bằng tích xác suất của một trong hai biến cố đó với xác suất có điều kiện của biến cố còn lại:

P(A.B) = P(A) . P(B/A) = P(B) . P(A/B)

Chứng minh: Giả sử phép thử có n kết quả cùng khả năng có thể xảy ra mA kết quả thuận lợi cho A, mB kết quả thuận lợi cho B. Vì A và B là hai biến cố bất kì, do đó nói chung sẽ có k kết quả thuận lợi cho cả A và B cùng đồng thời xảy ra. Theo định nghĩa cổ điển của xác suất ta có: P(A.B) =  \dfrac{k}{n};  P(A) = \dfrac{m_A}{n}

Ta đi tính P(B/A).

Với điều kiện biến cố A đã xảy ra, nên số kết quả cùng khả năng của phép thử đối với biến B là mA, số kết quả thuận lợi cho B là k. Do đó:P(B/A) = \dfrac{k}{m_A}

Như vậy: P(A.B) =   \dfrac{k}{n}=  { \dfrac{m_A}{n}}.{ \dfrac{k}{m_A}}  = P(A).P(B/A)

Vì vai trò của hai biến cố A và B như nhau. Bằng cách chứng minh tương tự ta được: P(A.B) = P(B).P(A/B)♦

(chứng minh trên được tham khảo từ giáo trình Xác suất thống kê của tác giả Hoàng Ngọc Nhậm – NXB Thống Kê)

Ví dụ:

1. Trong hộp có 20 nắp khoen bia Tiger, trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng xe BMW”. Bạn được chọn lên rút thăm lần lượt hai nắp khoen, tính xác suất để cả hai nắp đều trúng thưởng.

Giải: Gọi A là biến cố “nắp khoen đầu trúng thưởng”. B là biến cố “nắp khoen thứ hai trúng thưởng”. C là biến cố “cả 2 nắp đều trúng thưởng”.

Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng. p(A) = 2/20

Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng. Do đó: p(B/A) = 1/19.

Từ đó ta có: p(C) = p(A). p(B/A) = (2/20).(1/19) = 1/190 ≈ 0.0053

2. Áo Việt Tiến trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo đủ tiêu chuẩn xuất khẩu?

Giải:

Gọi A là biến cố ” qua được lần kiểm tra đầu tiên”, B là biên cố “qua được lần kiểm tra thứ 2″, C là biến cố “đủ tiêu chuẩn xuất khẩu”

Thì: p(C) = p(A). p(B/A) = 0,98.0,95 = 0,931

3. Lớp Lý 2 Sư Phạm có 95 Sinh viên, trong đó có 40 nam và 55 nữ. Trong kỳ thi môn Xác suất thống kê có 23 sinh viên đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một sinh viên trong danh sách lớp. Tìm xác suất gọi được sinh viên đạt điểm giỏi môn XSTK, biết rằng sinh viên đó là nữ?

Giải:

Gọi A là biến cố “gọi được sinh viên nữ”, B là biến cố gọi được sinh viên đạt điểm giỏi môn XSTK”, C là biến cố “gọi được sinh viên nữ đạt điểm giỏi”

Thì ta có: p(C) = P(B/A)

Do đó: p(C) = p(B/A) = \dfrac{p(AB)}{p(A)} = { \dfrac{11}{95}}.{ \dfrac{55}{95}} = { \dfrac{11}{55}} =0,2

b. Các định nghĩa về các biến cố độc lập:

* Định nghĩa 1: Hai biến cố A và B gọi là độc lập nhau nếu việc xảy ra hay không xảy ra biến cố này không làm thay đổi xác suất xảy ra của biến cố kia và ngược lại.

* Ta có thể dùng khái niệm xác suất có điều kiện để định nghĩa các biến cố độc lập như sau:

Nếu P(A/B) = P(A) và P(B/A) = P(B) thì A và B độc lập với nhau.

Trong trường hợp việc biến cố này xảy ra hay không xảy ra làm cho xác suất xảy ra của biến cố kia thay đổi thì hai biến cố đó gọi là phụ thuộc nhau.

Thí dụ: Trong bình có 4 quả cầu trắng và 5 quả cầu xanh, lấy ngẫu nhiên từ bình ra 1 quả cầu. Gọi A là biến cố “lấy được quả cầu xanh“. Hiển nhiên P(A) = 5/9 . Quả cầu lấy ra được bỏ lại vào bình và tiếp tục lấy 1 quả cầu. Gọi B là biến cố “lần thứ 2 lấy được quả cầu xanh“, P(B) = 5/9. Rõ ràng xác suất của biến cố B không thay đổi khi biến cố A xảy ra hay không xảy ra và ngược lại. Vậy hai biến cố A và B độc lập nhau.

Ta chú ý rằng: nếu A và B độc lập, thì A , {\overline{B}} hoặc {\overline{A}} , B hoặc {\overline{A}} , {\overline{B}} cũng độc lập với nhau.

Trong thực tế việc nhận biết tính độc lập, phụ thuộc, xung khắc của các biến cố. chủ yếu dựa vào trực giác.

* Định nghĩa 2: Các biến cố A1, A2, …, An, được gọi là độc lập từng đôi nếu mỗi cặp hai biến cố bất kỳ trong n biến cố đó độc lập với nhau.

Thí dụ: Xét phép thử từng đồng xu 3 lần. Gọi Ai là biến cố: “được mặt sấp ở lần tung thứ i” (i = 1, 2, 3). Rõ ràng mỗi cặp hai trong 3 biến cố đó độc lập với nhau. Vậy A1, A2, A3 độc lập từng đôi.

* Định nghĩa 3: các biến cố A1, A2, …, An, được gọi là độc lập từng phần nếu mỗi biến cố độc lập với tích của một tổng hợp bất kỳ trong các biến cố còn lại.

Ta chú ý là các biến cố độc lập từng đội thì chưa chắc độc lập toàn phần. Điều kiện độc lập toàn phần mạnh hơn độc lập từng đôi.

c) Hệ quả: Từ định lý trên ta có thể suy ra một số hệ quả sau đây:

Hệ quả 1:

Xác suất của tích hai biến cố độc lập bằng tích xác suất của các biến cố đó: P(A.B) = P(A).P(B).

Hệ quả 2:

Xác suất của tích n biến cố bằng tích xác suất của các biến cố đó, trong đó xác suất của mỗi biến cố tiếp sau đều được tính với điều kiện tấc cả các biến cố trước đó đã xảy ra:

P(A_1.A_2 ... A_n) = P(A_1).P(A_2/A_1).P(A_3/A_1.A_2) ... P(A_n/A_{1}...A_{n-1})

Hệ quả 3:

Xác suất của tích n biến cố độc lập toàn phần bằng tích xác suất của các biến cố đó:

P(A1.A2 … An) = P(A1).P(A2) … P(An)

Thảo luận

195 thoughts on “Xác suất có điều kiện

  1. có 20 kiện hàng, mỗi kiện có 10 sản phẩm trong đó có 8 kiện loại 1, mỗi kiện có 1 phê phẩm,7 kiện loại 2, mỗi kiện có 3 phế phẩm, 5 kiện loại 3, mỗi kiện có 5 phế phẩm,lấy ngẫu nhiên một kiện roi tu kien lay ngau nhien 1 spham
    1. tính xác suất spham lay ra la phe phẩm
    2 biet sp lay ra la phe pham tinh xác suất kien lay ra la loai 2

    Like

    Posted by nhan | 01/04/2014, 22:14
  2. Một xí nghiệp có 2 phân xưởng A và B cùng sản xuất một loại sản phẩm với tỉ lệ phế phẩm tương ứng là 2% và 3%.cho mỗi phân xưởng sản xuất ra 5 sản phẩm.Tính xác suất để số phế phẩm do 2 phân xưởng sản xuất là bằng nhau.
    Thầy ơi,giải giúp em với

    Like

    Posted by tram | 28/03/2014, 21:47
  3. gửi bạn Phù Thủy:
    gọi A là “trúng 1 viên đạn vào A”
    B là “trúng 2 viên đạn vào B”
    C là: “trúng 3 viên đạn vào C”
    D: “máy bay rơi”
    do A,B,C độc lập với nhau
    P(D)=P(A).p(B).P(C)= (15%*2*30%*3*55%)=14.85%

    Like

    Posted by sang | 27/02/2014, 21:09
  4. Thưa thầy, cho e hỏi bài này a : Xác suất để một đôi đế cao su trong cửa hàng giầy của một hạng nào đó có 0,hoặc 1,2 chiếc bị hỏng là 0,9 ; 0,08;0,02. Lấy ngẫu nhiên một đôi từ cửa hàng và sau đó lấy ngẫu nhiên một chiếc thì nó bị hỏng. Hỏi xác suất để chiếc kia cũng bị hỏng là bao nhiêu ?

    Like

    Posted by lluuthimai | 26/02/2014, 05:57
  5. Cho em hỏi bài này.
    Hai đấu thủ A và B thi đấu cờ.Trong mỗi ván hoặc A thắng hoặc B thắng ko có hòa.Xác suất thắng của A trong mối ván đều bằng p.Với quy ước đấu thủ nào có số ván thắng theo qui định xảy ra trước thì đấu thủ đó thắng cuộc.Hãy tính xác suất đấu thủ thắng cuộc trong trường hợp
    Nếu qui định A cần m ván thắng và B cần n ván thắng.

    Like

    Posted by Dream | 07/02/2014, 20:39
  6. giải hộ em bài này với
    1 lô hàng có 100 săn phẩm trong đó có 10 phế phẩm kiểm tra ngẫu nhiên 3 sản phẩm nếu có phế phẩm thì không mua lô hàng đó tính xác suất lô hang được mua trong trường hợp lấy có hoàn lại

    Like

    Posted by lonminsu.x95@gmail.com | 01/12/2013, 15:55
  7. giúp mình bài này với.1 máy bay có 3 bộ phận A,B,C có tầm quan trọng khác nhau. máy bay sẽ rơi nếu trúng 1 viên đạn vào A 2 viên đạn vào B 3 viên đạn vào C.biết các bộ phận A,B,C lầ lượt chiếm 15%,30%,55% diện tích máy bay.tính xác suất để khi máy bay rơi khi trúng 3 viên đạn

    Like

    Posted by phù thuỷ | 27/11/2013, 05:55
    • GIẢI: Xác suất để máy bay rơi khi trúng 3 viên đạn là:
      =15%*3+(55%)^3+(3*2/2)*(30%)^2
      = 88,64% kinh khủng quá ngồi trên chiếc máy bay này chỉ có 11,36% sống.

      Like

      Posted by phương | 06/12/2013, 11:42
  8. một lớp học có 60 sv gồm 40 sv học tiếng Anh, 30 sv học tiếng Pháp, 20 sv học cả 2 môn. chọn ngẫu nhiên 1 sv. tính xác suất của các biến cố sau: A: sv được chọn học tiếng Anh, B: sv được chọn chỉ học tiếng Pháp, C: sv được chọn học cả 2 môn

    Like

    Posted by dương | 19/10/2013, 21:55

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s

Translators & RSS

English French RussiaMaths 4 Physics (M4Ps)


Bạn hãy nhập địa chỉ email của mình để đăng ký theo dõi tin tức từ blog này và nhận những bài viết mới nhất qua địa chỉ email.

Join 2 013 other followers

Đôi lời

Bạn có thể theo dõi các lời bình liên quan đến lời bình của mình qua email bằng cách chọn dòng thông báo Báo cho bạn khi có người bình luận tiếp theo đề tài này bằng điện thư mỗi khi viết 1 lời bình.


Rất mong các bạn viết lời nhắn bằng tiếng việt có dấu nhé.

Để viết tiếng việt có dấu bạn dùng font chữ Unicode và bảng mã là Unicode UTF-8.


Để biết cách gõ công thức Toán học trong các lời nhắn ở trang web này, mời bạn đọc bài hướng dẫn tại đây hoặc bạn có thể xem bài hướng dẫn dùng MathType tại đây và bài tạo công thức trực tuyến tại đây


Get Well

Lời nhắn mới nhất

Thanh Ly on Dạ thưa cô, 10 ạ!
Theo dõi

Get every new post delivered to your Inbox.

Join 2 013 other followers

%d bloggers like this: