Khai triển Taylor – Maclaurin (Taylor expansion)

Shortlink: http://wp.me/P8gtr-R

Chỉ dẫn lịch sử

1. Công thức khai triển:

Giả thiết hàm số y = f(x) có tất cả các đạo hàm đến cấp n + 1 (kể cả đạo hàm cấp n + 1) trong một khoảng nào đó chứa điểm x = a.

Hãy xác định một đa thức y = P_n(x) bậc n mà giá trị của nó tại x = a bằng giá trị f(a) và giá trị của các đạo hàm đến hạng n của nó bằng giá trị của các đạo hàm tương ứng của hàm số f(x) tại điểm đó. Nghĩa là:

P_n(a) = f(a) ; P_{n}^{'}(a) = f'(a);...; P_{n}^{(n)}(a) = {{f}^{(n)}}(a) (1)

Ta hy vọng sẽ tìm được một đa thức như thế trong một ý nghĩa nào đó “gần” với hàm số f(x).

Ta sẽ xác định đa thức đó dưới dạng một đa thức theo lũy thừa (x – a) với các hệ số cần xác định:

{{P}_{n}}(x)={{C}_{0}}+{{C}_{1}}.(x-a)+{{C}_{2}}.{{(x-a)}^{2}}+...+{{C}_{n}}.{{(x-a)}^{n}} \qquad (2)

Các hệ số C_0, C_1, C_2, ..., C_n được xác định sao cho điều kiện (1) được thỏa mãn.

Trước hết, ta tìm các đạo hàm của P_n(x) :

\left\{ \begin{array}{l} P_{n}^{'}(x) = C_1 + 2C_2(x-a) + 3C_3.{(x-a)}^2 + ... + nC_n{(x-a)}^{n-1} \\ P_{n}^{''}(x) = 2C_2+3.2C_3.(x-a) + ... + n(n-1)C_n{(x-a)}^{n-2} \\ .................................................................................. \\ P_{n}^{(n)}(x) = n(n-1)...2.1.C_n \\ \end{array} \right. (3)

Thay x = a vào các biểu thức (2) và (3) ta có:

\left\{\begin{array}{l} P_n(a) = C_0 \\ P_n^{'}(a) = C_1 \\ P_n^{''}(a) = 2.1.C_2 \\ \text{....................................} \\ P_n^{(n)}(a) = n.(n-1)...2.1C_n \\ \end{array} \right.

So sánh với điều kiện (1) ta có:

\left\{ \begin{array}{l} f(a)={{C}_{0}} \\ f'(a)={{C}_{1}} \\ f''(a)=2.1.{{C}_{2}} \\ ....................... \\ {{f}^{(n)}}(a)=n.(n-1)...2.1.{{C}_{n}} \\ \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{C}_{0}}=f(a) \\ {{C}_{1}}=f'(a) \\ {{C}_{2}}={ \dfrac{1}{2!}}.f''(a) \\ ....................... \\ {{C}_{n}}={ \dfrac{1}{n!}}.{{f}^{(n)}}(a) \\ \end{array} \right. (4)

Thay các giá trị của C_0, C_1, C_2, ..., C_n vào công thức (2) ta có đa thức cần tìm:

\begin{array}{r}P_n(x) = f(a) + { \dfrac{f'(a)}{1!}}(x-a) + { \dfrac{f''(a)}{2!}}(x-a)^2 + { \dfrac{f'''(a)}{3!}}(x-a)^3 + \\ ... + { \dfrac{f^{(n)}(a)}{n!}}(x-a)^n \\ \end{array}

Ký hiệu bằng R_n(x) , hiệu giữa giá trị của hàm số đã cho f(x) và đa thức mới lập P_n(x) (hình vẽ): {{R}_{n}}(x) = f(x) - {{P}_{n}}(x)

Hay:

\begin{array}{r} f(x) = f(a) + { \dfrac{f'(a)}{1!}}(x-a) + { \dfrac{f''(a)}{2!}}{{(x-a)}^{2}} + { \dfrac{f'''(a)}{3!}}{{(x-a)}^{3}} + ... \\ + { \dfrac{{{f}^{(n)}}(a)}{n!}}{{(x-a)}^{n}} + {{R}_{n}}(x) \\ \end{array} (6)

taylor R_n(x) gọi là số hạng dư – đối với những giá trị x làm cho số hạng dư R_n(x) bé, thì khi đó đa thức P_n(x) cho biểu diễn gần đúng của hàm số f(x).

Do đó, công thức (6) cho khả năng thay hàm số y = f(x) bằng đa thức P_n(x) với độ chính xác tương ứng bằng giá trị của số hạng dư R_n(x)

Ta sẽ xác định những giá trị x để số hạng dư R_n(x) khá bé .

Viết số hạng dư dưới dạng: {{R}_{n}}(x) = { \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}Q(x) (7)

Trong đó Q(x) là hàm số cần phải xác định.

Với x và a cố định, hàm số Q(x) có giá trị xác định, ký hiệu giá trị đó bằng Q.

Ta xét, hàm số phụ theo biến t (t là giá trị nằm giữa a và x) :

\begin{array}{r}F(t) = f(x) - f(t) - { \dfrac{x-t}{1!}}f'(t) - { \dfrac{(x-t)^2}{2!}}f''(t) - ... \\ - { \dfrac{(x-t)^n}{n!}}f^{(n)}(t) - { \dfrac{(x-t)^{n+1}}{(n+1)!}}Q \\ \end{array} (8)

Tìm đạo hàm F’(t) :

\begin{array}{l} {F}'(t)=-{f}'(t)+{f}'(t)-{ \dfrac{(x-t)}{1}}{f}''(t)+{ \dfrac{2(x-t)}{2!}}{f}''(t) \\ \qquad -{ \dfrac{{{(x-t)}^{2}}}{2!}}{f}'''(t)+...-{ \dfrac{{{(x-t)}^{n-1}}}{(n-1)!}}{{f}^{(n)}}(t)+{ \dfrac{n{{(x-t)}^{n-1}}}{n!}}{{f}^{(n)}}(t) \\ \qquad -{ \dfrac{{{(x-t)}^{n}}}{n!}}{{f}^{(n+1)}}(t)+{ \dfrac{(n+1){{(x-t)}^{n}}}{(n+1)!}}Q \\ \end{array}

Rút gọn lại ta được :

F'(t)=-{ \dfrac{{{(x-t)}^{n}}}{n!}}{{f}^{(n+1)}}(t)+{ \dfrac{(n+1){{(x-t)}^{n}}}{(n+1)!}}Q \qquad (9)

Vậy hàm số F(t) có đạo hàm tại mọi điểm t gần điểm có hoành độ a.

Ngoài ra, từ công thức (8) ta có : F(x) = 0 và F(a) = 0.

Vì vậy, áp dụng công thức Rolle cho hàm số F(t) , tồn tại một giá trị t = \xi nằm giữa a và x sao cho F'(\xi) = 0

Thế vào (9) ta có : F'(\xi )=-{ \dfrac{{{(x-\xi )}^{n}}}{n!}}{{f}^{(n+1)}}(\xi )+{ \dfrac{(n+1){{(x-\xi )}^{n}}}{(n+1)!}}Q

Suy ra : Q = f^{(n+1)}(\xi)

Thay biểu thức này vào công thức (7) ta được :

{{R}_{n}}(x) ={ \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}(\xi ) – số hạng dư Larange

\xi là giá trị nằm giữa a và x, nên nó có thể viết dưới dạng: \xi = a + {\theta}(x-a) , \theta \in [0 ;1]

Nghĩa là : R_n(x) = { \dfrac{(x-a)^{n+1}}{(n+1)!}}f^{(n+1)}[a+{\theta}(x-a)]

Công thức:

\begin{array}{r} f(x)=f(a)+{\dfrac{f'(a)}{1!}}(x-a)+{ \dfrac{f''(a)}{2!}}{{(x-a)}^{2}}+{ \dfrac{f'''(a)}{3!}}{{(x-a)}^{3}}+...\\ +{ \dfrac{{{f}^{(n)}}(a)}{n!}}{{(x-a)}^{n}} +{ \dfrac{{{(x-a)}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}[a+\theta (x-a)] \\ \end{array} – gọi là công thức khai triển Taylor (Taylor expansion) của hàm số f(x).

Nếu trong công thức Taylor, đặt a = 0 thì nó viết dưới dạng:

\begin{array}{r} f(x) = f(0)+{ \dfrac{x}{1!}}f'(0) + { \dfrac{{{x}^{2}}}{2!}}f''(0) + { \dfrac{{{x}^{3}}}{3!}}f'''(0) + ... + { \dfrac{{{x}^{n}}}{n!}}{{f}^{(n)}}(0) \\ + { \dfrac{{{x}^{n+1}}}{(n+1)!}}{{f}^{(n+1)}}(\theta x) , \qquad \theta \in [0;1] \\ \end{array}

là công thức xấp xỉ hàm f(x) thành đa thức bậc n tại x = 0, với số dư R_n(x) – được gọi là công thức khai triển Maclaurin (Maclaurin expansion).

Tóm lại, ta có định lý sau:

Nếu hàm số y = f(x) có các đạo hàm f'(x) , f''(x) , ... , f^{(n)}(x) liên tục tại điểm x_0 và có đạo hàmf^{(n+1)}(x) trong lân cận của x_0 thì tại lân cận đó ta có công thức khai triển:

\begin{array}{r} f(x) = f({{x}_{o}}) + { \dfrac{f'({{x}_{o}})}{1!}}(x-{{x}_{o}}) + { \dfrac{f''({{x}_{o}})}{2!}}{{(x-{{x}_{o}})}^{2}} + ... \\ + { \dfrac{{{f}^{(n)}}({{x}_{o}})}{n!}}{{(x-{{x}_{o}})}^{n}}+{ \dfrac{{{f}^{(n+1)}}(c)}{n!}}{{(x-{{x}_{o}})}^{n+1}} \\ \end{array}

(c ở giữa x_0 và x, c = x_0+ a(x-x_0), 0 < a <1 )

Công thức này gọi là công thức khai triển Taylor cấp n, số hạng của cùng gọi là số hạng dư của nó. Đặc biệt x = 0 thì công thức Taylor trở thành công thức Maclaurin (công thức khai triển tại lân cận x_0 = 0 ):

\begin{array}{r} f(x) = f(0) + { \dfrac{f'(0)}{1!}}x + { \dfrac{f''(0)}{2!}}{{x}^{2}} + ... + { \dfrac{{{f}^{(n)}}(0)}{n!}}{{x}^{n}} + { \dfrac{{{f}^{(n+1)}}(\theta x)}{n!}}{{x}^{n+1}}, \\ \qquad (0<{\theta}<1) \\ \end{array}

Thảo luận

191 bình luận về “Khai triển Taylor – Maclaurin (Taylor expansion)

  1. thầy giúp em khai triển Maclaurin của căn bậc 3(sin(x^3)) với ạ. Cảm ơn thầy

    Thích

    Posted by Hoang Anh | 01/10/2017, 23:01
  2. khai triển maclaurin ln(x^2 +1) ?

    Đã thích bởi 1 người

    Posted by khanh | 14/12/2016, 18:06
  3. Gửi thầy,

    Em có chút ý kiến thế này, mong được thầy xem xét.
    Nếu có thể, thầy thêm 1 phần nói về ứng dụng của các công thức toán học trong các ngành kỹ thuật như khoa học máy tính, điện tử viễn thông… Em nghĩ như vậy bài blog sẽ hấp dẫn hơn 🙂

    Thích

    Posted by Dũng | 06/12/2015, 22:03
  4. khai trien hàm sinx trong lân cận của pi/2 làm thế nào ạ
    giúp em với ạ

    Thích

    Posted by phuongnhí | 19/01/2015, 21:51
  5. giải giúp mình câu này vs ạ, mình đag cần gấp. khai triển hàm sinx thành chuỗi lũy thừa trong lân cận của pi/2

    Thích

    Posted by kmno4nh4no3 | 19/01/2015, 21:29
  6. thầy ơi, em đang học PP tính.
    thầy giáo yêu cầu tụi em giải bài toán biểu diễn căn bậc n của 1 số thực ko âm bằng pp taylor
    mà em tìm trên mạng thì lại ko thấy có tài liệu gì? thầy có thể giúp em được ko ạ?

    Thích

    Posted by Hảo Lưu | 05/12/2014, 21:03
  7. thưa thầy cho em hỏi khai triển hàm theo công thức taylor y=√x , x=1 thì làm thế nào?

    Thích

    Posted by Nguyễn Phương Thảo | 05/12/2014, 12:50
  8. chào thầy!
    thầy cho em hỏi là bài tập này giải như thế nào ạ?
    Khai triển Taylor có điểm x0 =0, đến cấp 2n của biểu thức f(x) = 3x^2 + ln(1 +2x^2) ạ?? em cảm ơn thầy??

    Thích

    Posted by Khánh | 01/12/2014, 20:30

Bình luận về bài viết này

Translators & RSS

English French RussiaMaths 4 Physics (M4Ps)


Bạn hãy nhập địa chỉ email của mình để đăng ký theo dõi tin tức từ blog này và nhận những bài viết mới nhất qua địa chỉ email.

Join 2 786 other subscribers

Đôi lời

Bạn có thể theo dõi các lời bình liên quan đến lời bình của mình qua email bằng cách chọn dòng thông báo Báo cho bạn khi có người bình luận tiếp theo đề tài này bằng điện thư mỗi khi viết 1 lời bình.


Rất mong các bạn viết lời nhắn bằng tiếng việt có dấu nhé.

Để viết tiếng việt có dấu bạn dùng font chữ Unicode và bảng mã là Unicode UTF-8.


Để biết cách gõ công thức Toán học trong các lời nhắn ở trang web này, mời bạn đọc bài hướng dẫn tại đây hoặc bạn có thể xem bài hướng dẫn dùng MathType tại đây và bài tạo công thức trực tuyến tại đây


Get Well

Lời nhắn mới nhất

Dương Khánh Uyên trong Trang 2
Trần Thái An trong Trang 2
Chúc Chúc trong Xác suất có điều kiện
Hoang Anh trong Khai triển Taylor – Macl…
Trần Trung Đức trong Mẹo phân tích nhanh 1 phân…
Nhung Duong trong Trang 2
khoi trong Khai triển Taylor – Macl…
Minh pham trong Chuỗi Fourier Sine và Cos…
Minh Phạm trong Chuỗi Fourier
Anh Tuấn trong Cực trị (không điều kiện) của…